Closing Tue: 12.1, 12.2, 12.3
Closing Thu: 12.4(1), 12.4(2), 12.5(1)

$$
\text { Ex: } \boldsymbol{a}=\langle 1,2,0\rangle \text { and } \boldsymbol{b}=\langle-1,3,2\rangle
$$

Please carefully read my 12.3, 12.4 review sheets. Then look at the 12.5 visuals before class Wednesday.

12.4 The Cross Product

We define the cross product, or vector product, for two 3dimensional vectors,

$$
\boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & 2 & 0 \\
-1 & 3 & 2
\end{array}\right|=
$$

$\boldsymbol{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and
$\boldsymbol{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$,
by

$$
\boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=
$$

$=\left|\begin{array}{ll}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right| \boldsymbol{i}-\left|\begin{array}{ll}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right| \boldsymbol{j}+\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right| \boldsymbol{k}$
$=\left(a_{2} b_{3}-a_{3} b_{2}\right) \boldsymbol{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \boldsymbol{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \boldsymbol{k}$

You do: $\boldsymbol{a}=\langle 1,3,-1\rangle, \boldsymbol{b}=\langle 2,1,5\rangle$.
Compute $\boldsymbol{a} \times \boldsymbol{b}$

Most important fact:

The vector $\boldsymbol{v}=\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.

Note: If \mathbf{a} and \mathbf{b} are parallel to each other, then there are many vectors perpendicular to both \mathbf{a} and \mathbf{b}. So what happens to $\boldsymbol{v}=\mathbf{a} \times \mathbf{b}$?

Example: Give me any two vectors that are parallel and let's see.

Right-hand rule
If the fingers of the right-hand curl from \mathbf{a} to \mathbf{b}, then the thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

The magnitude of $\boldsymbol{a} \times \boldsymbol{b}$: Through some algebra and using the dot product rules, it can be shown that

$$
|\mathbf{a} \times \mathbf{b}|=|\boldsymbol{a}||\boldsymbol{b}| \sin (\theta)
$$

where θ is the smallest angle between \boldsymbol{a} and \boldsymbol{b}. $(0 \leq \theta \leq \pi)$

Note: $|\mathbf{a} \times \mathbf{b}|=|\boldsymbol{a}||\boldsymbol{b}| \sin (\theta)$ is the area of the parallelogram formed by \boldsymbol{a} and \boldsymbol{b}

12.5 Intro to Lines in 3D

To describe 3D lines we use parametric equations.

Here is a 2D example Consider the 2D line: $y=4 x+5$.
(a) Find a vector parallel to the line. Call it vector \mathbf{v}.
(b) Find a vector whose head touches
some point on the line when
drawn from the origin.
Call it vector r_{o}.
(c) We can reach all other points on the line by walking along r_{0}, then adding scale multiples of \mathbf{v}.

This same idea works to describe any line in 2- or 3-dimensions.

The equation for a line in 3D:
$\boldsymbol{v}=\langle a, b, c\rangle=$ parallel to the line. $\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=$ position vector
then all other points, (x, y, z), satisfy
$\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+\mathrm{t}\langle a, b, c\rangle$, for some number t.

The above form $\left(\boldsymbol{r}=\boldsymbol{r}_{\mathbf{0}}+\mathrm{t} \boldsymbol{v}\right)$ is called the vector form of the line.

We also can write this in parametric form as:

$$
\begin{aligned}
& x=x_{0}+a t, \\
& y=y_{0}+b t, \\
& z=z_{0}+c t .
\end{aligned}
$$

or in symmetric form:

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Basic Example - Given Two Points:

Find parametric equations of the line thru $P(3,0,2)$ and $Q(-1,2,7)$.

General Line Facts

1. Two lines are parallel if their direction vectors are parallel.
2. Two lines intersect if they have an (x, y, z) point in common (use different parameters when you combine!)
Note: The acute angle of intersection is the acute angle between the direction vectors.
3. Two lines are skew if they don't intersect and aren't parallel.
