Closing Tue: 12.1, 12.2, 12.3

Closing Thu: 12.4(1), 12.4(2), 12.5(1)

Ex: $\boldsymbol{a} = \langle 1,2,0 \rangle$ and $\boldsymbol{b} = \langle -1,3,2 \rangle$

Please carefully read my 12.3, 12.4 review sheets. Then look at the 12.5 visuals before class Wednesday.

 $a \times b = \begin{vmatrix} i & j & k \\ 1 & 2 & 0 \\ 1 & 2 & 2 \end{vmatrix} =$

12.4 The Cross Product

We define the <u>cross product</u>, or <u>vector product</u>, for two 3-dimensional vectors, (-)i - (-)j + (-)

 $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and

$$\boldsymbol{b} = \langle b_1, b_2, b_3 \rangle,$$

by

$$a \times b = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} =$$

$$= \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$

=
$$(a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

You do: $\mathbf{a} = \langle 1, 3, -1 \rangle$, $\mathbf{b} = \langle 2, 1, 5 \rangle$. Compute $\mathbf{a} \times \mathbf{b}$

Most important fact:

The vector $v = \mathbf{a} \times \mathbf{b}$ is orthogonal to *both* \mathbf{a} and \mathbf{b} .

Note: If **a** and **b** are parallel to each other, then there are many vectors perpendicular to both **a** and **b**. So what happens to $v = a \times b$?

Example: Give me any two vectors that are parallel and let's see.

Right-hand rule

If the fingers of the right-hand curl from \mathbf{a} to \mathbf{b} , then the thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

The magnitude of $a \times b$:

Through some algebra and using the dot product rules, it can be shown that

 $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin(\theta)$ where θ is the smallest angle between \mathbf{a} and \mathbf{b} . $(0 \le \theta \le \pi)$

Note: $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin(\theta)$ is the area of the parallelogram formed by \mathbf{a} and \mathbf{b}

12.5 Intro to Lines in 3D

To describe 3D lines we use parametric equations.

Here is a 2D example

Consider the 2D line: y = 4x + 5.

- (a) Find a vector parallel to the line.
 Call it vector v.
- (b) Find a vector whose head touches some point on the line when drawn from the origin.

 Call it vector **r**₀.
- (c) We can reach all other points on the line by walking along **r**₀, then adding scale multiples of **v**.

This same idea works to describe any line in 2- or 3-dimensions.

The equation for a line in 3D:

 $v = \langle a, b, c \rangle$ = parallel to the line. $r_0 = \langle x_0, y_0, z_0 \rangle$ = position vector

then all other points, (x, y, z), satisfy $\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$, for some number t.

The above form ($r = r_0 + t v$) is called the *vector form* of the line.

We also can write this in *parametric* form as:

$$x = x_0 + at,$$

$$y = y_0 + bt,$$

$$z = z_0 + ct.$$

or in *symmetric form*:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Basic Example – Given Two Points: Find parametric equations of the line thru P(3, 0, 2) and Q(-1, 2, 7).

General Line Facts

- 1. Two lines are **parallel** if their direction vectors are parallel.
- Two lines intersect if they have an (x, y, z) point in common (use different parameters when you combine!)
 Note: The acute angle of intersection is the acute angle between the direction vectors.
- 3. Two lines are **skew** if they don't intersect and aren't parallel.